3.11.3 \(\int \frac {x^4}{\sqrt {a+(2+2 b-2 (1+b)) x^2+c x^4}} \, dx\) [1003]

Optimal. Leaf size=108 \[ \frac {x \sqrt {a+c x^4}}{3 c}-\frac {a^{3/4} \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{6 c^{5/4} \sqrt {a+c x^4}} \]

[Out]

1/3*x*(c*x^4+a)^(1/2)/c-1/6*a^(3/4)*(cos(2*arctan(c^(1/4)*x/a^(1/4)))^2)^(1/2)/cos(2*arctan(c^(1/4)*x/a^(1/4))
)*EllipticF(sin(2*arctan(c^(1/4)*x/a^(1/4))),1/2*2^(1/2))*(a^(1/2)+x^2*c^(1/2))*((c*x^4+a)/(a^(1/2)+x^2*c^(1/2
))^2)^(1/2)/c^(5/4)/(c*x^4+a)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.02, antiderivative size = 108, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 29, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.103, Rules used = {4, 327, 226} \begin {gather*} \frac {x \sqrt {a+c x^4}}{3 c}-\frac {a^{3/4} \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} F\left (2 \text {ArcTan}\left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{6 c^{5/4} \sqrt {a+c x^4}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[x^4/Sqrt[a + (2 + 2*b - 2*(1 + b))*x^2 + c*x^4],x]

[Out]

(x*Sqrt[a + c*x^4])/(3*c) - (a^(3/4)*(Sqrt[a] + Sqrt[c]*x^2)*Sqrt[(a + c*x^4)/(Sqrt[a] + Sqrt[c]*x^2)^2]*Ellip
ticF[2*ArcTan[(c^(1/4)*x)/a^(1/4)], 1/2])/(6*c^(5/4)*Sqrt[a + c*x^4])

Rule 4

Int[(u_.)*((a_.) + (c_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_.), x_Symbol] :> Int[u*(a + c*x^(2*n))^p, x] /; Fre
eQ[{a, b, c, n, p}, x] && EqQ[j, 2*n] && EqQ[b, 0]

Rule 226

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[(1 + q^2*x^2)*(Sqrt[(a + b*x^4)/(a*(
1 + q^2*x^2)^2)]/(2*q*Sqrt[a + b*x^4]))*EllipticF[2*ArcTan[q*x], 1/2], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rule 327

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[c^(n - 1)*(c*x)^(m - n + 1)*((a + b*x^n
)^(p + 1)/(b*(m + n*p + 1))), x] - Dist[a*c^n*((m - n + 1)/(b*(m + n*p + 1))), Int[(c*x)^(m - n)*(a + b*x^n)^p
, x], x] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0] && GtQ[m, n - 1] && NeQ[m + n*p + 1, 0] && IntBinomialQ[a, b,
 c, n, m, p, x]

Rubi steps

\begin {align*} \int \frac {x^4}{\sqrt {a+(2+2 b-2 (1+b)) x^2+c x^4}} \, dx &=\int \frac {x^4}{\sqrt {a+c x^4}} \, dx\\ &=\frac {x \sqrt {a+c x^4}}{3 c}-\frac {a \int \frac {1}{\sqrt {a+c x^4}} \, dx}{3 c}\\ &=\frac {x \sqrt {a+c x^4}}{3 c}-\frac {a^{3/4} \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{6 c^{5/4} \sqrt {a+c x^4}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.
time = 10.03, size = 62, normalized size = 0.57 \begin {gather*} \frac {x \left (a+c x^4-a \sqrt {1+\frac {c x^4}{a}} \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};-\frac {c x^4}{a}\right )\right )}{3 c \sqrt {a+c x^4}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[x^4/Sqrt[a + (2 + 2*b - 2*(1 + b))*x^2 + c*x^4],x]

[Out]

(x*(a + c*x^4 - a*Sqrt[1 + (c*x^4)/a]*Hypergeometric2F1[1/4, 1/2, 5/4, -((c*x^4)/a)]))/(3*c*Sqrt[a + c*x^4])

________________________________________________________________________________________

Maple [C] Result contains complex when optimal does not.
time = 0.14, size = 91, normalized size = 0.84

method result size
default \(\frac {x \sqrt {c \,x^{4}+a}}{3 c}-\frac {a \sqrt {1-\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}}\, \EllipticF \left (x \sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}, i\right )}{3 c \sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}\, \sqrt {c \,x^{4}+a}}\) \(91\)
risch \(\frac {x \sqrt {c \,x^{4}+a}}{3 c}-\frac {a \sqrt {1-\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}}\, \EllipticF \left (x \sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}, i\right )}{3 c \sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}\, \sqrt {c \,x^{4}+a}}\) \(91\)
elliptic \(\frac {x \sqrt {c \,x^{4}+a}}{3 c}-\frac {a \sqrt {1-\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}}\, \EllipticF \left (x \sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}, i\right )}{3 c \sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}\, \sqrt {c \,x^{4}+a}}\) \(91\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^4/(c*x^4+a)^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/3*x*(c*x^4+a)^(1/2)/c-1/3*a/c/(I/a^(1/2)*c^(1/2))^(1/2)*(1-I/a^(1/2)*c^(1/2)*x^2)^(1/2)*(1+I/a^(1/2)*c^(1/2)
*x^2)^(1/2)/(c*x^4+a)^(1/2)*EllipticF(x*(I/a^(1/2)*c^(1/2))^(1/2),I)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^4/(c*x^4+a)^(1/2),x, algorithm="maxima")

[Out]

integrate(x^4/sqrt(c*x^4 + a), x)

________________________________________________________________________________________

Fricas [A]
time = 0.09, size = 44, normalized size = 0.41 \begin {gather*} -\frac {\sqrt {c} \left (-\frac {a}{c}\right )^{\frac {3}{4}} {\rm ellipticF}\left (\frac {\left (-\frac {a}{c}\right )^{\frac {1}{4}}}{x}, -1\right ) - \sqrt {c x^{4} + a} x}{3 \, c} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^4/(c*x^4+a)^(1/2),x, algorithm="fricas")

[Out]

-1/3*(sqrt(c)*(-a/c)^(3/4)*ellipticF((-a/c)^(1/4)/x, -1) - sqrt(c*x^4 + a)*x)/c

________________________________________________________________________________________

Sympy [C] Result contains complex when optimal does not.
time = 0.39, size = 37, normalized size = 0.34 \begin {gather*} \frac {x^{5} \Gamma \left (\frac {5}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{2}, \frac {5}{4} \\ \frac {9}{4} \end {matrix}\middle | {\frac {c x^{4} e^{i \pi }}{a}} \right )}}{4 \sqrt {a} \Gamma \left (\frac {9}{4}\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**4/(c*x**4+a)**(1/2),x)

[Out]

x**5*gamma(5/4)*hyper((1/2, 5/4), (9/4,), c*x**4*exp_polar(I*pi)/a)/(4*sqrt(a)*gamma(9/4))

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^4/(c*x^4+a)^(1/2),x, algorithm="giac")

[Out]

integrate(x^4/sqrt(c*x^4 + a), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {x^4}{\sqrt {c\,x^4+a}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^4/(a + c*x^4)^(1/2),x)

[Out]

int(x^4/(a + c*x^4)^(1/2), x)

________________________________________________________________________________________